Immunization With Autologous Dendritic Cells is Associated With Extended Survival in Glioblastoma Patients

Glioblastoma Drug Development Summit

March 15, 2023 Boston, MA

Marnix L. Bosch Northwest Biotherapeutics, Inc.

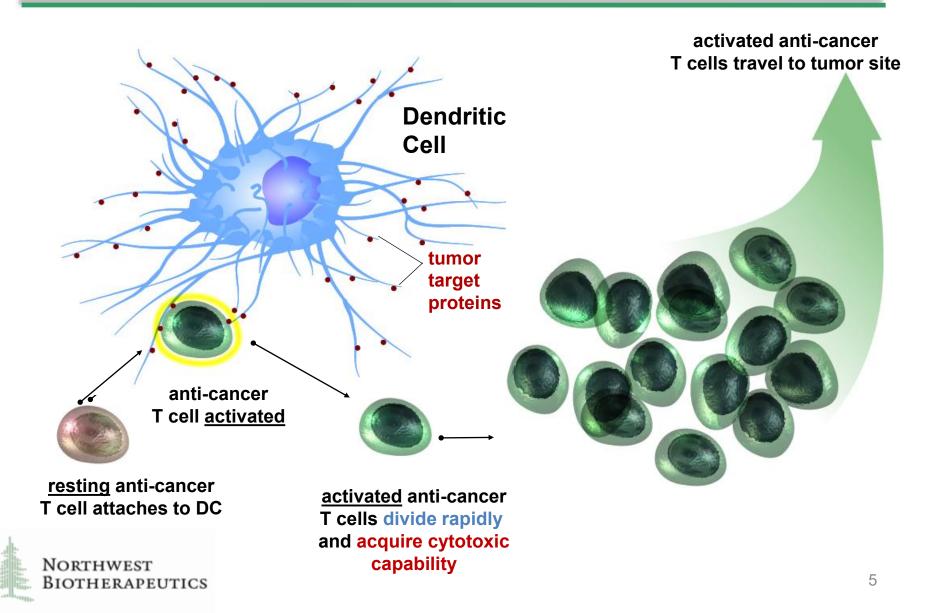
Disclaimer

Certain statements made in this presentation are "forward-looking statements" of NW Bio as defined by the Securities and Exchange Commission ("SEC"). All statements, other than statements of historical fact, included in this presentation that address activities, events or developments that NW Bio believes or anticipates will or may occur in the future are forward-looking statements. These statements are based on certain assumptions made based on experience, expected future developments and other factors NW Bio believes are appropriate in the circumstances. Such statements are subject to a number of assumptions, risks and uncertainties, many of which are beyond the control of NW Bio. Investors are cautioned that any such statements are not guarantees of future performance. These forward-looking statements could cause actual results and developments to differ materially from those expressed or implied in such statements, including our ability to raise funds for general corporate purposes and operations, including our clinical trials, the commercial feasibility and success of our technology, our ability to recruit qualified management and technical personnel, our ability to scale up the manufacturing of our product candidates for commercialization, the success of our clinical trials and our ability to obtain and maintain required regulatory approvals for our products. Furthermore, NW Bio does not intend (and is not obligated) to update publicly any forward-looking statements. The contents of this presentation should be considered in conjunction with the risk factors contained in NW Bio's recent filings with the SEC. This communication is neither an offer to sell nor a solicitation of an offer to buy any securities mentioned herein. This publication is confidential for the information of the addressee only and may not be reproduced in whole or in part. It is strictly prohibited to circulate copies, or disclose to another party, without the prior written consent of Northwest Biotherapeutics (NW Bio).

Overview

Presentation overview

- 1. Introduction to DCVax[®]-L
- 2. DCVax[®]-L Mechanism of Action
- 3. Clinical Results
 - a) Phase III trial results
 - b) Compassionate use cases
- 4. Conclusions



DCVax[®]-L Introduction

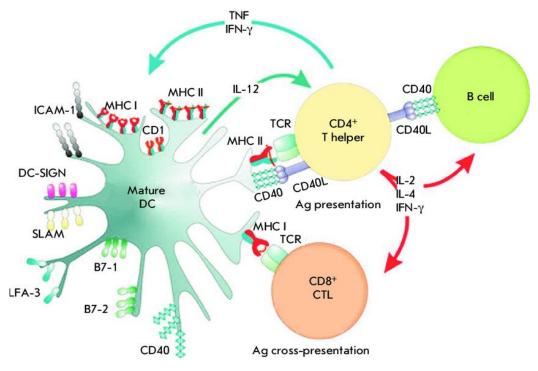
- DCVax[®]-L is autologous dendritic cells (DCs) loaded with autologous tumor cell lysate
 - Uses dendritic cells, which are the master cells of the immune system
 - DCs instill both targeting and direction of the response
 - Uses tumor cell lysate to ensure a broad spectrum immune response against multiple antigens
- DCVax[®]-L treatment is intended as adjuvant treatment following surgery
- A Phase III trial showing association between DCVax-L treatment and extended survival was recently reported on (L. Liau et al., JAMA Oncology, January 2023)
- The product is manufactured for each patient separately. Manufacturing takes 8 days, plus release testing

DCVax-: Mechanism of Action

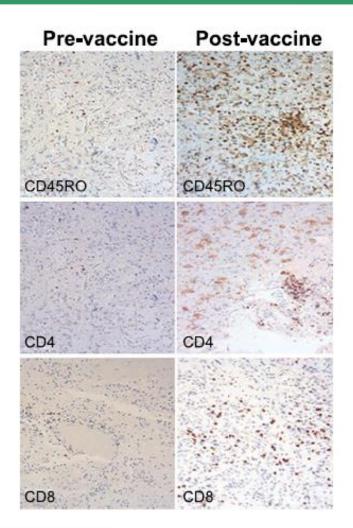
Mechanism of Action (1)

Antigen Uptake

Proteomics analyses were conducted on the following materials:


- Tumor lysate
- Unpulsed DCs
- DCs pulsed with tumor lysate
- Peptides eluted from pulsed DCs

Conclusion: The dendritic cells in DCVax-L take up (tumor) antigens from tumor cell lysate and express those on the surface in the context of both class I and class II MHC antigens


Mechanism of Action (2) T cell stimulation

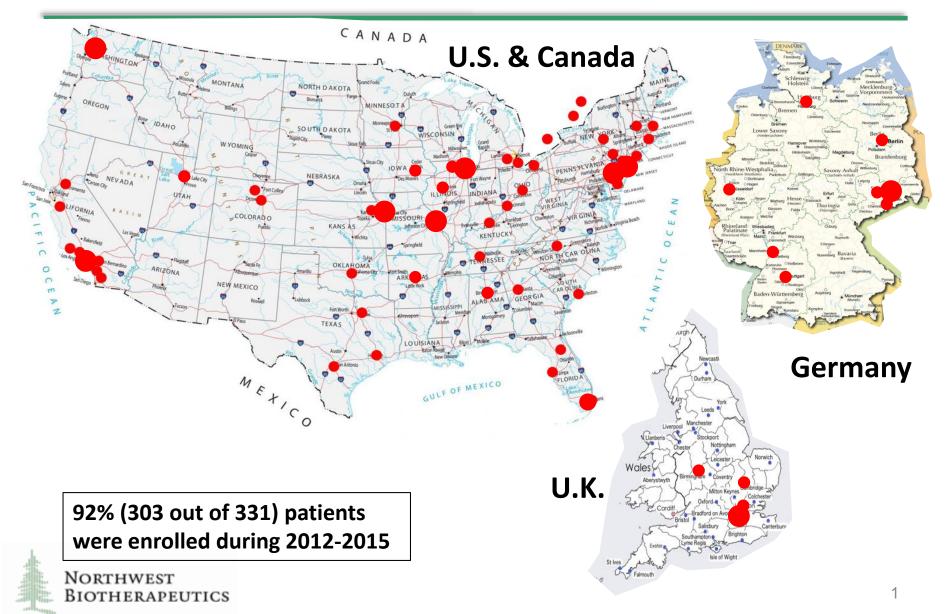
- Antigen-loaded DCs induce a primary T cell response through a combination of different signals:
 - Interaction of the T cell receptor (TCR) with peptide antigens associated with MHC molecules
 - Costimulatory signals such as CD40, CD80, CD86
 - Cytokine production

Mechanism of Action (3) T cell Infiltration in GBM Post Vaccination

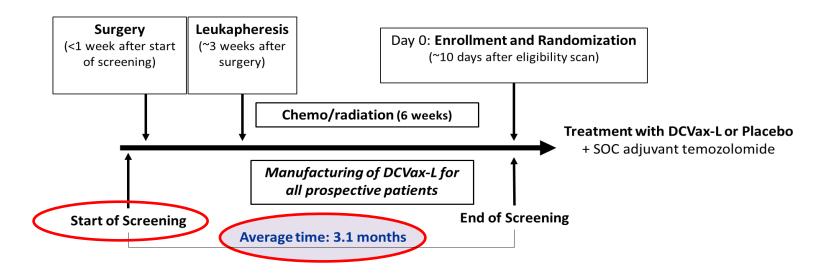
Infiltration of T cells in the tumor is observed in patients treated with DCVax-L

Both CD4 and CD8 cells are seen

Phase III Trial Overview


JAMA Oncology | Original Investigation

Association of Autologous Tumor Lysate-Loaded Dendritic Cell Vaccination With Extension of Survival Among Patients With Newly Diagnosed and Recurrent Glioblastoma A Phase 3 Prospective Externally Controlled Cohort Trial


Linda M. Liau, MD, PhD; Keyoumars Ashkan, MD, FRCP, FRCS; Steven Brem, MD; Jian L. Campian, MD, PhD; John E. Trusheim, MD; Fabio M. Iwamoto, MD; David D. Tran, MD, PhD; George Ansstas, MD; Charles S. Cobbs, MD; Jason A. Heth, MD; Michael E. Salacz, MD; Stacy D'Andre, MD; Robert D. Aiken, MD; Yaron A. Moshel, MD, PhD; Joo Y. Nam, MD; Clement P. Pillainayagam, MD; Stephanie A. Wagner, MD; Kevin A. Walter, MD; Rekha Chaudary, MD; Samuel A. Goldlust, MD; Ian Y. Lee, MD; Daniela A. Bota, MD, PhD; Heinrich Elinzano, MD; Jai Grewal, MD; Kevin Lillehei, MD; Tom Mikkelsen, MD, FRCPC; Tobias Walbert, MD; Steven Abram, MD; Andrew J. Brenner, MD, PhD; Matthew G. Ewend, MD; Simon Khagi, MD; Darren S. Lovick, MD; Jana Portnow, MD; Lyndon Kim, MD; William G. Loudon, MD; Nina L. Martinez, MD; Reid C. Thompson, MD; David E. Avigan, MD; Karen L. Fink, MD, PhD; Francois J. Geoffroy, MD; Pierre Giglio, MD; Oleg Gligich, MD; Dietmar Krex, MD; Scott M. Lindhorst, MD; Jose Lutzky, MD; Hans-Jörg Meisel, MD, PhD; Minou Nadji-Ohl, MD; Lhagva Sanchin, MD; Andrew Sloan, MD; Lynne P. Taylor, MD; Julian K. Wu, MD; Erin M. Dunbar, MD; Arnold B. Etame, MD, PhD; Santosh Kesari, MD, PhD; David Mathieu, MD; David E. Piccioni, MD, PhD; David S. Baskin, MD; Michel Lacroix, MD; Sven-Axel May, MD; Pamela Z. New, MD; Timothy J. Pluard, MD; Steven A. Toms, MD; Victor Tse, MD; Scott Peak, MD; John L. Villano, MD, PhD; James D. Battiste, MD, PhD; Paul J. Mulholland, MD; Michael L. Pearlman, MD; Kevin Petrecca, MD, PhD; Michael Schulder, MD; Robert M. Prins, PhD; Alton L. Boynton, PhD; Marnix L. Bosch, PhD

DCVax-L Trial Sites

Screening and Enrollment

Treatment Schedule

3 treatments in Month 1: Days 0, 10, 20

3 booster treatments: Months 2, 4, 8

Treatments 2X per year for maintenance

Trial Design; Statistical Analysis Plan

Primary Endpoint: OS in newly diagnosed GBM

DCVax-L arm (n=232) vs. External controls (n=1,366)

(control arms of external studies)

Secondary Endpoint: OS in recurrent GBM

Placebo arm crossovers* (n=64) vs. External controls (n=640)

*(Placebo arm patients received only SOC + placebo until recurrence, then DCVax-L) (control arms of external studies)

This SAP and its Endpoints were pre-specified and submitted to regulators before unblinding.

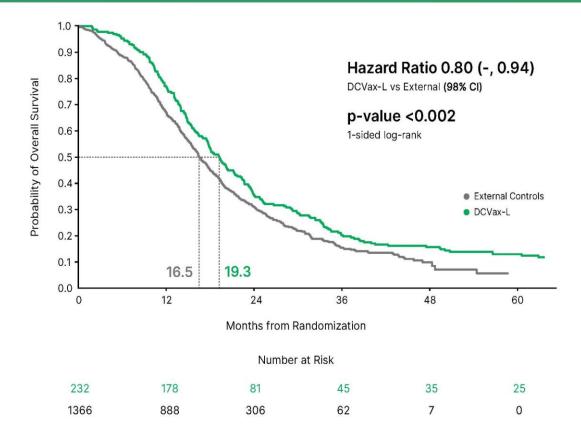
External Controls (ECP)

Criteria used to identify the trials included the following:

- Randomized controlled trials
- Control arm with SOC or physician's choice
- Patients must be 18 years or older
- Contemporaneous with DCVax-L
- KM plots for OS (and subgroups) included for digitization
- Independent expert firm evaluated & selected the comparators with no Sponsor involvement

External Control Populations (ECPs) Survival outcomes

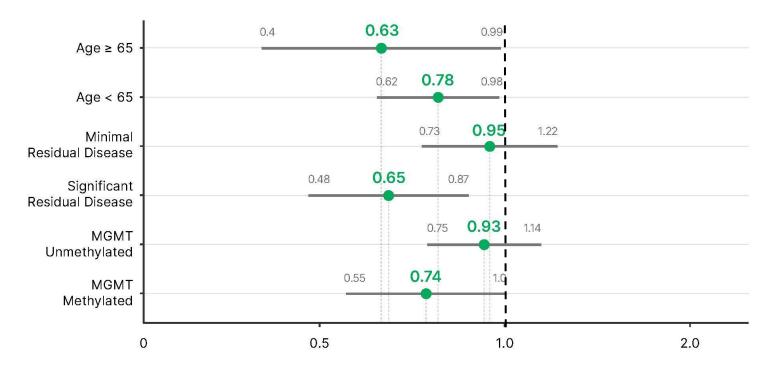
Newly Diagnosed Glioblastoma					
Study	Agent under study	n	Median OS (months)	95% CI (months)	
Gilbert et al 2013	dose-dense tmz	411	16.6	14.9 - 18.0	
Gilbert et al. 2014	bevacizumab	309	16.1	14.8 - 18.7	
Weller et al. 2017	rindopepimut	374	17.4	16.2 – 18.8	
Stupp et al. 2017	tumor treating fields	229	16.0	14.0 - 18.4	
Wen et al. 2019	ICT-107	43	15.0	12.3 – 23.1	
Aggregate Newly Diagnosed		1,366	16.5	16.0 - 17.5	
Recurrent Glioblastoma at First Relapse					
Study	Agent under study	n	Median OS (months)	95% CI (months)	
Wick et al. 2010	enzastaurin	92	7.1	6.0 - 8.8	
Taal et al. 2014	bevacizumab	46	8.0	6.0 - 11.0	
Brandes et al. 2016	galunisertib	40	7.5	5.6 - 10.3	
Cloughesy et al. 2017	onartuzumab	65	12.6	n.a. ²	
Wick et al. 2017	bevacizumab	149	8.6	7.6 - 10.4	
Brandes et al. 2018	bevacizumab	62	5.5	3.9 – 7.2	
Galanis et al. 2019	bev + dasatinib	38	7.7	n.a. ²	
Lombardi et al. 2019	regorafanib	60	5.6	4.7 – 7.3	
Narita et al. 2019	peptide vaccine	30	8.0	4.8 - 12.9	
Lee et al. 2020	bev + trebananib	58	11.5	8.4 - 14.2	
Aggregate Recurrent GBM		640	7.8	7.2 – 8.2	


Validation of the ECP

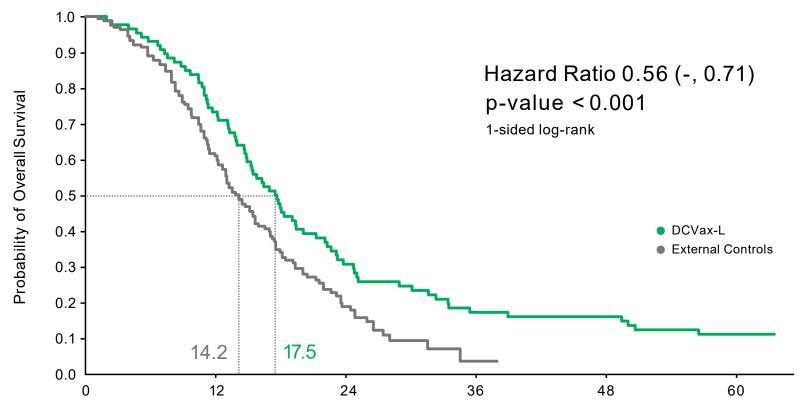
For each comparator study, the treatment arm was compared against the external controls determined for DCVax-L trial. All results were same as originally reported.

Indication	Study	HR vs. ECP	Lower bound	Upper bound
Newly	Gilbert 2013	1.01	0.89	1.14
	Gilbert 2014	1.13	0.72	1.33
diagnosed	Weller 2017	0.9	0.78	1.03
GBM	Stupp 2017	0.73	0.65	0.83
	Wen 2019	0.98	0.72	1.33
Recurrent GBM	Wick 2010	1.17	0.94	1.45
	Brandes 2016	1.01	0.78	1.31
	Wick 2017	0.94	0.80	1.10
	Cloughesy 2017	0.92	0.65	1.29
	Brandes 2018	1.52	1.14	2.02
	Galanis 2019	1.12	0.88	1.44
	Lombardi 2019	0.84	0.62	1.15
	Narita 2019	0.92	0.68	1.23
	Taal 2019	0.91	0.65	1.29
	Lee 2020	0.93	0.68	1.28

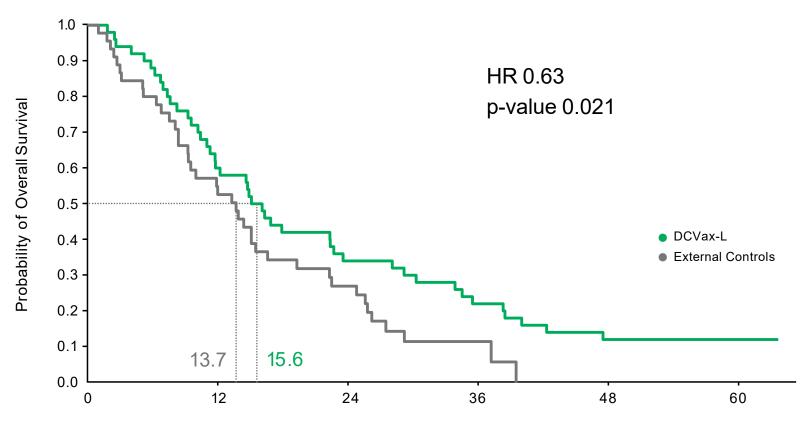
Overall Survival in Newly Diagnosed GBM



mOS of DCVax arm = **19.3 mos** from randomization; **22.4 mos from surgery** mOS of controls = 16.5 mos from randomization


Overall Survival in Subgroups

Hazard Ratio (two-sided 95% CI)



Significant Residual Disease

Months from Randomization

Months from Randomization

Sensitivity Analyses

Known bias: not all trials excluded patients with evidence of progression post chemoradiation. Removing those trials yields the following result:

Studies removed	n ECP	HR	98% CI	р
none	1366	0.80	0.00, 0.94	0.002
Gilbert 2013, 2014	646	0.77	0.00 - 0.92	0.001

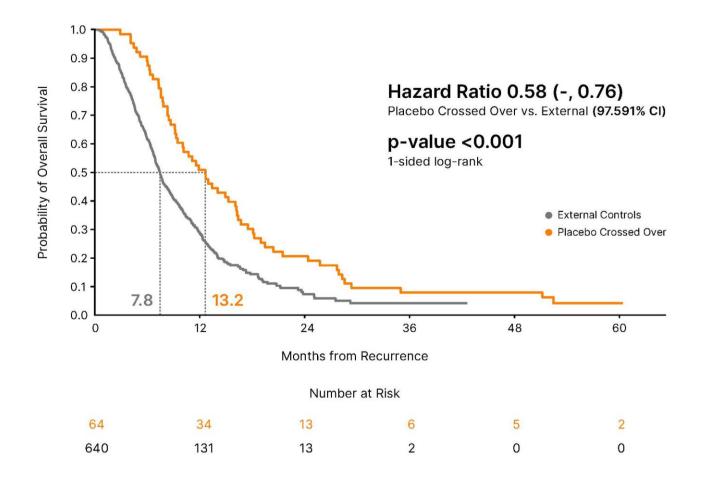
<u>Unknown biases</u>: specific inclusion criteria for each trial may have influenced outcomes. Removing each trial individually yields the following results:

Study removed	n ECP	HR	98% CI	р
none	1366	0.80	0.00, 0.94	0.002
Gilbert 2013	955	0.77	0.00, 0.92	<0.001
Gilbert 2014	1057	0.80	0.00, 0.94	0.002
Weller 2017	992	0.79	0.00, 0.94	0.002
Stupp 2017	1137	0.82	0.00, 0.97	0.007
Wen 2019	1323	0.80	0.00, 0.94	0.002

External Controls: Individual Matching

Adjustments for individual patient characteristics: MAIC

(Matching Adjusted Indirect Comparison)


The MAIC methodology applies a weight to each individual patient in the DCVax-L population in such a way that the sum of the weights for patients in each category for a characteristic achieves a match with the external control population, thereby making the patient populations comparable, while reducing the sample size.

- Adjusts for even small differences in individual patient characteristics.
- Reduces the sample size for DCVax-L, but not for the ECP

OS difference vs. ECP remained statistically significant.

Overall Survival in Recurrent GBM

mOS = 13.2 months from recurrence with DCVax-L vs. 7.8 months in controls

Landmark Survival Data

nGBM Landmark survival rate				
	ECP	DCVax-L	Relative Rate	
36 mo	15.5%	20.2%	130%	
48 mo	9.9%	15.7%	159%	
60 mo	5.7%	13.0%	228%	
rGBM Landmark survival rate post progression				
	ECP	DCVax-L	Relative Rate	
6 mo	64.0%	90.6%	142%	
12 mo	30.8%	54.1%	175%	
18 mo	15.9%	31.8%	200%	
24 mo	9.6%	20.7%	215%	
30 mo	5.1%	11.1%	217%	

Overall Survival (OS) Results – Key Points

NEWLY DIAGNOSED GBM:

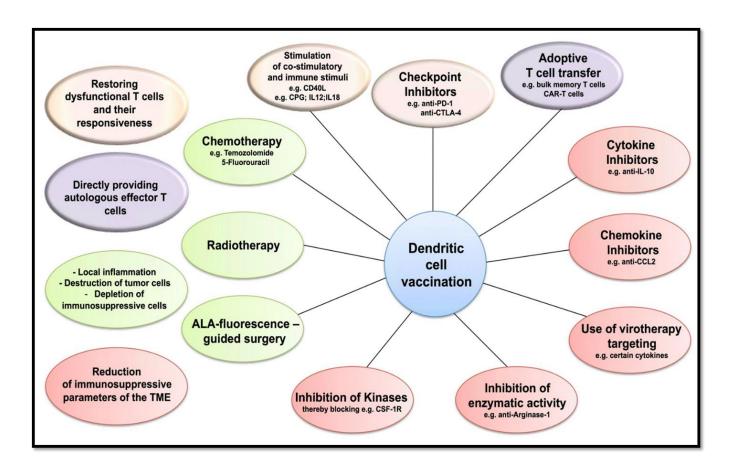
- mOS: 19.3 mos from randomization (22.4 mos from surgery) vs. 16.5 mos from randomization in controls
- mMGMT mOS: 30.2 mos from randomization (33 mos from surgery) vs 21.3 mos from randomization in controls
- Survival Tail: 13% vs 5.7% at 5 years

RECURRENT GBM:

- **>** mOS: 13.2 mos vs. 7.8 mos from recurrence
- > Survival Tail: 20.7% vs. 9.6% at 24 mos after recurrence

11.1% vs. 5.1% at 30 mos after recurrence

Safety Profile

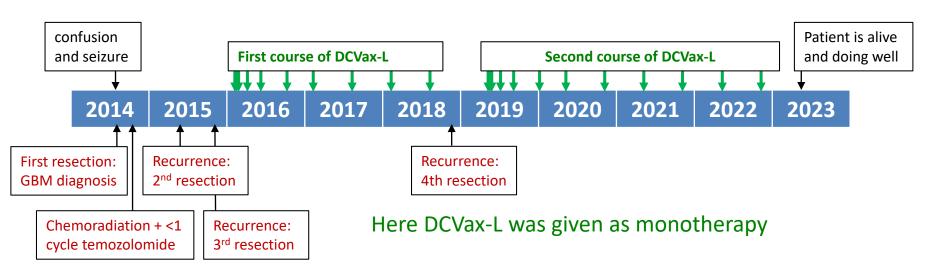

>2,100 doses were administered during the DCVax-L trial

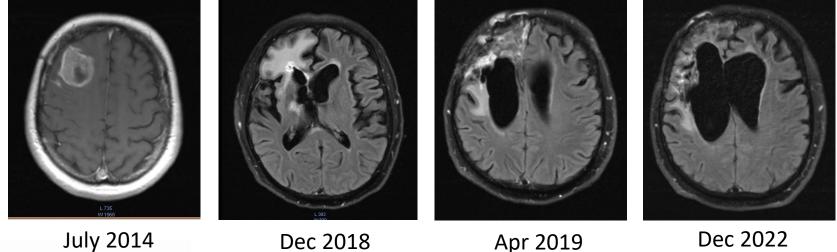
Only 5 SAEs at least "possibly related" to DCVax-L treatment
3 cases of intracranial edema (grades 2 and 3)
1 case of nausea (grade 3)
1 case of lymph node infection (grade 3)

Overall safety profile in DCVax-L patients is similar to that experienced with standard of care treatment

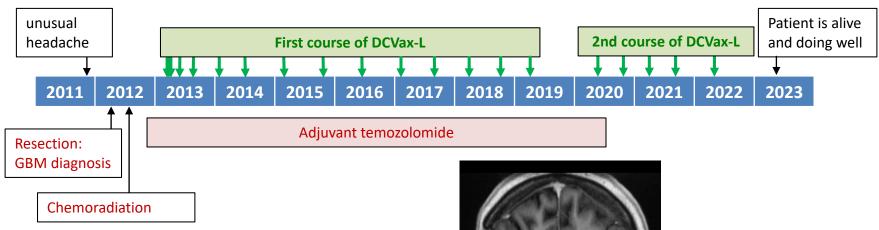
Future Opportunities for Combination Therapies

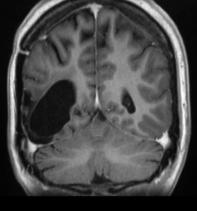
Datsi A, Sorg RV. Frontiers in Immunology, 2021




Broader Perspective

- DCVax-L suitable for combinations with wide range of other treatments (checkpoint inhibitors, oncolytic viruses, cytokines, chemo, etc.)
- When a DCVax-L patient has recurrence(s), new batch(es) of DCVax-L can be made (treatment targets not lost, as they are with targeted therapies)
- DCVax-L can potentially apply to any type of solid tumor (multiple other cancers treated in compassionate uses cases and a prior small pilot trial)
- DCVax-L can be administered in community settings as well as major cancer centers.


Compassionate Case #1: 70 yr old male with GBM


July 2014 Northwest Biotherapeutics

Compassionate Case #2 46 yr. old female with GBM

Notes:

- Patient was diagnosed with GBM with oligodendrioglioma component
- MGMT methylated
- Scans are done every 6 months, with no evidence of progression to date

August 2019

Anecdotal observations:

- DCVax-L is well tolerated and can be effective in older patients, at least through late 80s ages
- When patients experience recurrence, and have an additional resection, a new batch of DCVax-L can be made and patients can respond, with extended survival
- When patients experience recurrence before all doses are used, continuing treatment with the original DCVax-L batch can still extend survival

Conclusions

- Survival of GBM patients participating in clinical trials as control subjects is remarkably consistent, creating a landscape in which ECPs can be used as synthetic control arms
- Against this background, treatment with DCVax-L is associated with statistically significant and clinically meaningful extended survival, both in newly diagnosed and recurrent GBM
- The results are robust and hold up well against multiple analyses to address known and unknown sources of bias
- Mechanism of action studies demonstrate uptake and presentation of a broad range of antigens which may be important to prevent tumor escape

Acknowledgements

- Patients and families
- Clinical trial investigators
- UCLA: Dr. Linda Liau and Dr. Robert Prins
- King's College: Dr. Keyoumars Ashkan
- Advent Bioservices: Mike Scott, Alessandra Riva and team
- Flaskworks: Lekhana Bhandari and Andrew Kozbial
- Cognate Bioservices
- Northwest Biotherapeutics

